Estimate how many volunteers you would need

Assignment Help Engineering Mathematics
Reference no: EM131109175

2009 Honors Examination in Statistics-

1. Sixteen people volunteered to be part of an experiment. All sixteen people were Caucasian, between the ages of 25 and 35, and were supplied with nice clothes. Eight of them were male and eight were female. The question of interest in this experiment was whether females receive faster service at restaurants than males. Each of the eight male participants was randomly assigned a restaurant, and each of the eight females was randomly assigned to one of these same eight restaurants. One Friday night, all sixteen people went out to eat, each one alone. The male and female assigned to the same restaurant would arrive within 5 minutes of each other, with the order determined by flipping a coin (male first or female first). Each person then ordered a similar drink and a similar meal. The time (in minutes) until the food arrived at the table was recorded. They are shown below:

Restaurant

1

2

3

4

5

6

7

8

Male

22

14

16

26

18

13

9

27

Female

25

12

13

21

21

14

9

16

Assume the time until food arrived followed a normal distribution.

(a) Construct a 95% confidence interval for the mean difference of the service time between females and males.

(b) Do you think the data provide strong evidence that females receive faster service at restaurants than males? State the null and alternative hypotheses, calculate test statistic and p-value, then make conclusion in both statistical language and plain English. Test at 5% level of significance.

(c) Can you use the confidence interval you constructed in (a) to answer the question in (b)? Why?

(d) Suppose it's known that the standard deviation of the difference of the service time is 5 minutes. Estimate the power of the test if on average, service to males is 4 minutes long than to females.

(e) Suppose it's known that the standard deviation of the difference of the service time is 5 minutes. If you want the 95% confidence intervals for the mean difference of the service time between females and males narrower than 4 minutes. Estimate how many volunteers you would need.

2. A box contains many coins that are either balanced or loaded. When tossed, a loaded coin will have probability p ∈ (0.5, 1.0) landing on its head and a balanced coin will have probability 0.5 landing on its head. The proportion of balanced coin in the box is θ, θ ∈ (0, 1). A coin is randomly selected from the box and independently tossed n times. Let X be the number of heads in these n tosses. Given p and θ,

(a) Find the probability mass function for X.

(b) Find the expected value of X.

(c) Find the variance of X.

(d) Suppose it's known that p = 0.9. A student randomly chose a coin from the box and tossed it 20 times, getting 14 heads. Provide an estimate of θ, the proportion of balanced coins in the box.

3. Three players simultaneous toss coins. The coin tossed by A (B) [C] turns up heads with probability p1 (p2) [p3].

(a) If all three players toss their coins just once. What's the probability that they all got the same outcome?

(b) If all three players toss their coins just once. What's the probability that player A got an outcome different from those of the other two?

(c) Now suppose the game is the following: If one person gets an outcome different from those of the other two, then he is the odd man out. If there is no odd man out, the players flip again and continue to do so until they get an odd man out. What is the probability that A will be the odd man out on the second round of flips?

(d) In the same game as in (c), what is the probability that A will be the odd man out?

4. A complaint of sex discrimination has been filed against a division of a company that employs 31 (16 males) individuals in a particular job where all employees have a similar amount of education and prior work experience. Three variable are considered: The response variable is the monthly salary, in dollars; the Seniority is measured by months and Female is an indicator (dummy) variable with value =1 if the employee is a female.

(a) The women submit the following regression analysis that they claim shows sex discrimination since they have adjusted for any difference in seniority at the company.

 

Estimate

Std. Error

t value

Pr(> |t|)

Intercept

987.77650

40.69517

24.27

< .0001

Seniority

5.04134

0.40725

12.38

< .0001

Female

-152.10662

34.59094

?

?

Find the values of the two question marks. What are the estimated regression equations for male and females, respectively? Give the test the plaintiffs (women) used to support their claim of unequal pay. State the null and alternative hypotheses and describe the test statistic and p-value.

(b) The company claims that the proper regression should allow for an interaction between gender and seniority and submits the following alternative regression

 

Estimate

Std. Error

t value

Pr(> |t|)

Intercept

913.89714

52.12293

17.53

< .0001

Seniority

5.95343

0.58043

10.26

< .0001

Female

-28.79427

67.24365

-0.43

0.6719

Seniority: Female

-1.62575

0.77492

-2.10

0.0454

 The company argues that in their model the Female coefficient is not significant even at the .1 level. What part of the output of their regression are they referring to? Be sure to state the null and alternative hypotheses and carry out the statistical test the company did. Do you agree with the company? According to the company's analysis, what are the estimated regression equations for male and females, respectively?

(c) The court appoints an expert who questions the analysis of the company and proposes a more appropriate procedure to test whether  "sex" affects salary from the model submitted by the company. What procedure did the expert decide on and carry out the calculation? Again, formulate the correct null and alternative hypotheses and carry out the test. Does the proper test (at the level of .05) support the plaintiffs or the company?

5. Let X1, X2, . . . Xn be independent, identically distributed random variables with the density function:

fX(x) = 1/θ,  0 ≤ x ≤ θ.

(a) Find the mean and standard deviation of X1;

(b) Write out the Likelihood function L(θ) for the entire sample X1, X2, . . . Xn;

(c) Find the Maximum Likelihood Estimate (MLE) θˆ for the entire sample X1, X2, . . . Xn;

(d) Find the distribution function and density function of the MLE θˆ;

(e) Is the MLE unbiased? Consistent?

(f) According to the distribution of the θˆ, construct a 100(1-α)% confidence interval for θ.

6. Let X1, X2, . . . , Xn be independent Bernoulli random variables with success probability p. Let Y = X1 + X2 + . . . + Xn.

(a) What kind of random variable is Y? Find the probability mass function for Y.

(b) Is Y a sufficient statistic for p?

(c) Assume that p has a non-informative prior distribution: Uniform on [0, 1]. Find the joint distribution of Y and p.

(d) Find the posterior distribution for p|Y.

(e) Can you suggest a Bayes estimate for p?

(f) Based on the posterior distribution, suggest a Bayes confidence interval for p.

Reference no: EM131109175

Questions Cloud

What will be the rotational speed in rpm : Estimate the electrical power we might get from this system assuming 80% efficiency. Assume head from the speed of the river is negligible.
SubNetting project : XUMUC is has the WAN links in place to the new locations in the Houston Region. XUMUC currently has 2 other Regions San Francisco and Denver. Originally, XUMUC was only in one region (San Francisco). The previous consultant did a poor job with the in..
Compute the actual return on plan assets : Given the items and amounts shown on page 1094, compute the actual return on plan assets:
Why the lookup time does or does not remain o(log)(n)) : How would you implement the methods defined in Section 8.1.2 so that that RETRIEVESYMBOL finds the appropriate declaration of a given identifier?
Estimate how many volunteers you would need : Suppose it's known that the standard deviation of the difference of the service time is 5 minutes. If you want the 95% confidence intervals for the mean difference of the service time between females and males narrower than 4 minutes. Estimate how..
What kind of account arises : If pension expense recognized in a period exceeds the current amount funded by the employer, what kind of account arises, and how should it be reported in the financial statements?
The overall organization of the paper : Format: Times New Roman, 12 pt; Double Spaced with NO additional spaces between paragraphs (change the default); 1" side margins  Citation Format:MLA citations should ust be used in this paper.
Fewer customers returning items : Best Electronics Inc. offers a "no hassle" return policy. The number of items returned per day follows the normal distribution. The mean number of customer returns is 10.3 per day and the standard deviation is 2.25 per day.
Find function and select the appropriate units : Where fx is the percent of relief obtained from a dose of x grams of a drug, where 0 ≤ x ≤1.5 Find f'(0.4) and select the appropriate units.

Reviews

Write a Review

Engineering Mathematics Questions & Answers

  Prime number theorem

Dirichlet series

  Proof of bolzano-weierstrass to prove the intermediate value

Every convergent sequence contains either an increasing, or a decreasing subsequence.

  Antisymmetric relations

How many relations on A are both symmetric and antisymmetric?

  Distributed random variables

Daily Airlines fies from Amsterdam to London every day. The price of a ticket for this extremely popular flight route is $75. The aircraft has a passenger capacity of 150.

  Prepare a system of equations

How much money will Dave and Jane raise for charity

  Managing ashland multicomm services

This question is asking you to compare the likelihood of your getting 4 or more subscribers in a sample of 50 when the probability of a subscription has risen from 0.02 to 0.06.]  Talk about the comparison of probabilities in your explanation.

  Skew-symmetric matrices

Skew-symmetric matrices

  Type of taxes and rates in spokane wa

Describe the different type of taxes and their rates in Spokane WA.

  Stratified random sample

Suppose that in the four player game, the person who rolls the smallest number pays $5.00 to the person who rolls the largest number. Calculate each player's expected gain after one round.

  Find the probability density function

Find the probability density function.

  Develop a new linear programming for an aggregate production

Linear programming applied to Aggregate Production Planning of Flat Screen Monitor

  Discrete-time model for an economy

Discrete-time model for an economy

Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd