Discuss the impact of having the capacitor

Assignment Help Electrical Engineering
Reference no: EM133734350

Diode Circuits--Half-Wave and Full-Wave Rectifier

Introduction:

Procedure:

This lab has to be implemented in both software (running simulations on Multisim) and hardware

Part A: Half wave rectification:

Software (Multisim):
Construct the circuit of a half-wave rectifier in Figure 1 in Multisim. Use a function generator to provide the AC input of 30VRMS (Make sure to convert the RMS to Peak voltage) and use a center tapped transformer to obtain VSEC . With a 10:1 ratio, the VSEC should be 3 VRMS. Be sure to set the tolerance of the resistor to 20%.
Connect the Tektronix oscilloscope so that channel 1 is across the secondary output side of the transformer and channel 2 is across the load resistor (RL). Observe the waveforms VSEC and VLOAD.
The output isn't very useful as a DC source because of the variations in the output waveform. In order to produce steady DC from a rectified AC output, you need to add a filter. There will be an AC ripple voltage component at the power supply frequency for a half-wave rectifier, twice that for full-wave, where the voltage is not completely smoothed. Connect a 100 μF capacitor (C1) in parallel with the load resistor (RL). (Note the polarity of the capacitor).
Measure and plot the peak-to-peak ripple voltage, V8RIPPLE, of the output. Measure the ripple frequency. Tabulate all data gathered and compare the results with and without the filter capacitor.

Hardware (NI myDAQ):

Note: Change the load resistor value to 10k ohm to compensate for the limitation of the MYDAQ module for the halfwave and full wave rectifier circuits.
Using the voltage VSEC obtained from the simulation, build the circuit in Figure 2 on the breadboard with VSEC as an input, which connects to the diode and load resistor RL in series. (See Figure 3)
Using the jumper wires, screw driver, and screw terminal connector, connect the board to NI MyDAQ Instrument Device to analyze the circuit.
Use channel AO0 on the NI myDAQ Instrument Device to provide the input (VSEC) and channel AI0 to measure the output voltage(VLOAD).
Using the function generator from NI ELVISmx Instrument Launcher, provide the input voltage VSECto the circuit. Measure the output voltage VLOAD, across the load RL using the oscilloscope.
In order to produce steady DC from a recitified AC output, you need to add a filter. Connect a 100 μF capacitor (C1) in parallel with the load resistor (RL) (Note the polarity of the capacitor)
Measure and plot the peak-to-peak ripple voltage, VRIPPLE, of the output. Measure the ripple frequency. Tabulate all data gathered and compare the results with and without the filter capacitor.

Review questions:
What is the purpose of having a half-wave rectifier in the circuit?
Describe the procedure in this lab to arrive at the final design of both the hardware portion and the software portion to achieve the design objectives?
Discuss the impact of having the capacitor on the output voltage and the effect of additional load on the ripple voltage.

Part B: Full wave rectification:

Software (Multisim):
Construct the circuit of a half-wave rectifier in Figure 3 in Multisim. Use a function generator to provide the AC input of 30VRMS (Make sure to convert the RMS to Peak voltage) and use a center tapped transformer to obtain VSEC . Notice that the ground for the circuit has changed. With a 10:1 ratio, the VSEC should be 3 VRMS. Be sure to set the tolerance of the resistor to 20%.

Connect the Tektronix oscilloscope so that each channel is across each diode. Observe the waveforms VSEC across each diode and notice that they are out of phase with each other. You can use the third channel to observe the output voltage VLOAD across the resistor.

In order to produce steady DC from a rectified AC output, you need to add a filter. Connect a 100 μF capacitor (C1) in parallel with the load resistor (RL). (Note the polarity of the capacitor).

Measure the peak-to-peak ripple voltage, VRIPPLE, of the output. Measure the ripple frequency. Tabulate all data gathered and compare the results with and without the filter capacitor.

Hardware (NI myDAQ):
Due to the lack of accessibility with NI myDAQ device, it is not possible to use the function generator to provide the two inputs simultaneously using the hardware. Therefore, you will be using the "Arbitrary Waveform Generator" for this part.
Using the jumper wires, screw driver and screw terminal connector, connect the board to NI MyDAQ Instrument Device to analyze the circuit.
Please use the attached two sine waveforms (Fullwave Input 1 and Fullwave Input 2) that has the same amplitude as the 3 VRMS and are 180 out of phase with each other to provide input voltages VSEC1 and VSEC2 as two inputs to the two diodes for full wave rectification.
Using the jumper wires, screw driver and screw terminal connector, connect the board to NI MyDAQ Instrument Device to analyze the circuit.
Using the Arbitrary Waveform Generator from NI Elvismx Instrument Launcher, load the two files provided in step 6 for output channel AO0 and AO1. Launch the Oscilloscope (Set the Time/Div to 20ms) and run to measure the output voltage VLOAD, across the load resistor RL. Use channel AI0 to plot the output waveform for VLOAD.
In order to produce steady DC from a rectified AC output, you need to add a filter. Connect a 100 μF capacitor (C1) in parallel with the load resistor (RL). (Note the polarity of the capacitor).
Measure and plot the peak-to-peak ripple voltage, VRIPPLE, of the output. Measure the ripple frequency. Tabulate all data gathered and compare the results with and without the filter capacitor.

Review questions:
What is the purpose of having a full-wave rectifier in the circuit?
Describe the procedure in this lab to arrive at the final design of both the hardware portion and the software portion to achieve the design objectives?
Discuss the impact of having the capacitor on the output voltage and the effect of additional load on the ripple voltage.
How is the output of the full-wave rectifier different from half-wave rectifier?

Reference no: EM133734350

Questions Cloud

New-comers into asset-based supply chain and logistics : Conduct research surrounding potential barriers to entry for new-comers into asset-based supply chain and logistics.
Outline the characteristics of effective leadership : Promoting Positive Leadership Describe: Outline the characteristics of effective leadership. Explain
Identify the industry and geographic region of company : Identify the industry and geographic region of the company. Identify the position. Identify 3 primary goals for the onboarding program.
Share prices in recent months due to disappointing earnings : AppHarvest is a sustainable food company in Appalachia. However, there has been significant drop in share prices in recent months due to disappointing earnings.
Discuss the impact of having the capacitor : Diode Circuits--Half-Wave and Full-Wave Rectifier - Describe the procedure in this lab to arrive at the final design of both the hardware portion
Identify three primary goals for the onboarding program : Identify three primary goals for the onboarding program. Identify five key content areas. For each key content area
How would the differences be manifested clinically : What are the pathophysiologic differences between graft versus host disease and graft rejection? How would these differences be manifested clinically?
Limited resources you must effectively plan : My executive management team and I believe that to efficiently manage your departments' limited resources you must effectively plan, organize,
How presentation that synthesizes the information illustrate : how presentation that synthesizes the information illustrates how this applies to a trend or trends in the industry and share what you have learned from article

Reviews

Write a Review

Electrical Engineering Questions & Answers

  Lithium ion battery technology

The paper includes Lithium ion battery technology with its advantages and disadvantages. The paper discusses about the Lithium air battery in which detailed reactions of Lithium with air including nonaqueous as well as aqueous are given.

  Power transformers and tariffs

Construction of different types of power transformer, significant energy savings

  Paper on orthogonal frequency-division multiplexing

This document is shown a paper on Orthogonal frequency-division multiplexing with advantages, disadvantages and uses.

  Function of the hmi in a scada system

This assignment contains electronics engineering questions like State the commonly found components of a SCADA (Supervisory control and data acquisition) system. and decribe the function of the HMI in a SCADA system.

  Resultant waveform of the odd harmonic series

Prepare an Excel graph showing the individual components and summated resultant waveform of the odd harmonic series resulting in an approximate square wave.

  Explain scada system

Explain the function of the HMI in a SCADA system.

  Design a 2-digit 24 second shot-clock

Design a 2-digit 24 second "shot-clock" countdown timer with pushbutton controller.

  Model a discrete-time system

To understand di erent signal models To be able to model a discrete-time system and design simple signal processing algorithms.

  Draw a relay construction diagram

Draw a relay construction diagram and briefly explain the operation of a relay.

  Frequency division multiplexing

Write a short technical report on Frequency Division Multiplexing

  Impact of electron energy

Briefly discuss the impact of electron energy, electron current and target on the Bremsstrahlung generated.

  Traffic light controller

The schematic of the traffic light controller

Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd