Discuss the component of the energy-momentum tensor

Assignment Help Physics
Reference no: EM131410274

PROBLEM -

A Scalar Field: In this problem you are to work out some of the properties of a Lorentz scalar field φ(x) (as opposed to the Lorentz 4-vector field Aµ(x) that we have been studying). Assume that this field obeys the superposition principle, so that the action is quadratic in the field, just as for the case with electromagnetism.

Lorentz invariance and superposition then uniquely determine the action for the scalar field and its interaction with a particle of mass m to be

S = Sf + Sm + Smf = ∫d4x (½∂µφ∂µ? - ½M2φ2) - mc ∫ds - λ ∫ds φ(x)

where λ is the analogue of the charge of the particle (and is called the "Yukawa coupling"), M is a constant with units of inverse length, and the ∫ds integrals are over the world line of the particle, as usual. The first term in Sf is quadratic in the fields and contains two derivatives; it is the scalar analogue of the FµνFµν term in electromagnetism. However, gauge invariance forbids a term M2AµAµ in electromagnetism; since the theory of a scalar field has no gauge invariance, we are free to add a term M2φ2 to the Lagrange density.

(a) Show that the equation of motion for the particle in an external field φ(x) is

(mc + λφ) duµ/ds = λ (∂µφ - uµuν∂νφ).

Compare this with the Lorentz force law and comment on the similarities and differences.

Note that if φ(x) = v is constant (over all of space time), the effect of the field is equivalent to increasing the mass of the particle by λv/c. This is a manifestation of the famous "Higgs mechanism" in particle physics, whereby a scalar field which is nonzero in the vacuum gives mass to elementary particles.

(b) Now consider the equations of motion for the scalar field φ(x). Imposing the usual conditions that φ(x) → 0 at spatial infinity, use the variational principle to show that the equation of motion for the scalar field is

(∂µµ + M2)φ(x) = -λρ(x)

where ρ(x) = ∫ds δ(4)(x - x(τ )). This equation is known as the Klein-Gordon equation (with a source ρ(x)).

(c) Consider a particle at rest at the origin, ρ(x) = δ(3)(x). Show that the solution to the scalar field equation of motion is

φ(r) = -(λ/4π)e-Mr/r.

This is known as a "Yukawa potential." Note that the M = 0 limit of this expression yields the familiar Coulomb potential; for nonzero M, the force is effectively zero for distances much larger than 1/M. This is why we don't see any long-range forces due to scalar fields in nature: for the Higgs field, 1/M is approximately 10-18 m, or about 10-3 of the radius of the proton. Another scalar field in nature is responsible for the strong nuclear force between protons and neutrons. Since this force has a range of approximately the size of the proton, Yukawa concluded in the 1930's that the force was mediated by a scalar field with 1/M ∼ 10-15 m. In the quantum theory, this allowed him to predict the existence of a massive scalar particle with mass hM/c ∼ 10-28 kg, which turned out to be a subatomic scalar particle called the pion.

(d) Note that we could have chosen positive or negative signs for both the "kinetic term" ∂µφ∂µφ and the "mass term" -M2φ2 in the action for φ(x).

However, we will see shortly that the energy density carried by a field is given by T00, the 00 component of the energy-momentum tensor, defined by

Tµν = (∂L/∂(∂νφ))∂µφ - gµνL

where L is the Lagrange density of the field. Find the energy density of a free scalar field φ in terms of φ(x) and its derivatives. Argue from T00 that if we had chosen different signs for the kinetic and mass terms in the action the theory would not make physical sense.

Reference no: EM131410274

Questions Cloud

How long you expect before revco will emerge from bankruptcy : What the costs of the Revco bankruptcy will be, and how long you expect before Revco will emerge from bankruptcy. Write your answers in a 850 to 1000-word report and cite your sources.
Explain the principles of and barriers : Explain the principles of and barriers to effective interpersonal communications. Be sure to address the significance of each principle in being an effective communicator. The best papers will list at least two barriers and provide advice for over..
What would be a reasonable sampling plan for the component : The company accept a 5% risk of rejecting good batches, and a 10% risk of accepting bad batches. What would be a reasonable sampling plan for the component?
What is the minimum expected cost over three years : Draw a decision tree for this problem, and find the decisions that minimise the total cost over the next two years. If a three-year-old engine is virtually certain to break down sometime in the next year, what is the minimum expected cost over thr..
Discuss the component of the energy-momentum tensor : PHY 450S: PROBLEM. Note that we could have chosen positive or negative signs for both the "kinetic term" ∂µ?∂µ? and the "mass term" -M2?2 in the action for ?(x). However, we will see shortly that the energy density carried by a field is given by T00,..
What is the best ordering policy for the item : Annual demand for an item is 2,000 units, each order costs £10 to place and the annual holding cost is 40% of the unit cost.
Describe what you feel will be one or two key economic issue : USA. Describe what you feel will be one or two key economic and social issues to be debated at the 2016 Presidential elections in the United States.
What is the reorder level for a 98% cycleservice level : What reorder level should the company use for an item that has a Normally distributed demand with mean of 1,000 units a week and standard deviation of 100 units? What is the reorder level for a 98% cycleservice level?
Find the optimal order quantity for the part : Find the optimal order quantity for the part, the time between orders and the minimum cost of stocking the part.

Reviews

len1410274

3/2/2017 2:21:01 AM

I want only question 2 to be solved (2a to 2d). In this problem you are to work out some of the properties of a Lorentz scalar field (as opposed to the Lorentz 4-vector field that we have been studying). Assume that this field obeys the superposition principle, so that the action is quadratic in the field, just as for the case with electromagnetism.

Write a Review

Physics Questions & Answers

  Find the magnitude of the resulting magnetic field

A sphere of radius R is uniformly charged to a total charge of Q. It is made to spin about an axis that passes through its center with an angular speed ω. Find the magnitude of the resulting magnetic field at the center of the sphere.

  Find the equivalent resistance

A resistor is in the shape of a cube, with each side of resistance  R . Find the equivalent resistance between any two of its adjacent corners.

  What is the electric field at the location

Question: Field and force with three charges? What is the electric field at the location of Q1, due to  Q 2 ?

  What is the maximum displacement of the bridge deck

What is the maximum displacement of the bridge deck?

  What is the magnitude of the current in the wire

What is the magnitude of the current in the wire as a function of time?

  Blackbody

Questions on blackbody, Infra-Red Detectors & Optic Lens and Digital Image.

  Gravity conveyor

Illustrate the cause of the components accelerating from rest down the conveyor.

  Calculate the dc voltage

Calculate the dc voltage applied to the circuit.

  Quadrupole moments in the shell model

Quadrupole moments in the shell model

  Determine the tension in each string

Determine the tension in each string

  Introductory mechanics: dynamics

Calculate the smallest coefficient of static friction necessary for mass A to remain stationary.

  Evaluate maximum altitude

Evaluate maximum altitude?

Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd