Already have an account? Get multiple benefits of using own account!
Login in your account..!
Remember me
Don't have an account? Create your account in less than a minutes,
Forgot password? how can I recover my password now!
Enter right registered email to receive password!
Spectrum analysis is often applied to signals comprised of sinusoids. Sinusoidal signals are particularly interesting, because they share properties with both deterministic and random signals. On the one hand, we can describe them in terms of a simple equation. On the other hand, they have infinite energy, so we often characterize them in terms of their average power, just as with random signals. This problem explores some theoretical issues in modeling sinusoidal signals from the point of view of random signals. We can consider sinusoidal signals as stationary random signals by assuming that the signal model is s[n] = A cos(ω0n + θ ) for -∞
(a) Show that the autocorrelation function for such a signal is
(b) Using Eq. (11.34), write the set of equations that is satisfied by the coefficients of a 2nd-order linear predictor for this signal.
(c) Solve the equations in (b) for the optimum predictor coefficients. Your answer should be a function of ω0.
(e) Use Eq. (11.37) to determine an expression for the minimum mean-squared prediction error. Your answer should confirm why random sinusoidal signals are called "predictable" and/or "deterministic."
Why a substance is being heated at a fast rate the temperature of decomposition
Assist with the setting of design variables necessary for sizing equipment
Use Laplace transformation to solve the initial value problem
Equal rates of mass transfer for the production of the fine chemical are required. This is often required for certain types of organic synthesis.
Application of reverse osmosis principles for the desalination of sea water
Prepare the design and evaluation of a new chemical manufacturing process.
Adsorption and Membrane Processes
Draw T-S diagram of the cycle.
The potential energy between two atoms A and B are constants and r the interatomic separation distance.
Implications of the future of fabrication for international trade, transportation, and logistics
The atmospheric pressure of 100k Pa acts on the other side of the piston. The gas is heated until the volume is doubled and the final pressure is 500 kPa. Calculate the work done by the gas.
Evaluate particle diameter at different terminal gas velocities
Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!
whatsapp: +1-415-670-9521
Phone: +1-415-670-9521
Email: [email protected]
All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd