Demonstrate the characteristics of the spectrum analyzer

Assignment Help Other Engineering
Reference no: EM131728318

Assignment

Experiment: Introduction to the Spectrum Analyzer

Purpose and Discussion

The purpose of this simulation is to demonstrate the characteristics and operation of the Spectrum Analyzer as it applies to radio frequency (RF) communications. The Spectrum Analyzer is one of the most essential testing instruments in the field of communications. To this point, the oscilloscope has been relied upon to analyze AC signals and their relationships to one another. The oscilloscope allows measurements of phase variations between signals as well as period, amplitude and overall signal performance. The time versus amplitude scale, however, does not allow the specific components of a signal to be studied. The Spectrum Analyzer measures signals in the frequency domain, decomposing them into spectral lines at different frequencies.

Ideally, a perfect undistorted sine wave is connected to the input of a Spectrum Analyzer. A single vertical line at its fundamental frequency of oscillation is observed. However, signal sources in the real world are not perfect. They always create some distortion which results in tiny spectral lines. These lines are multiples of the fundamental frequency and are low in amplitude.

Spectral analysis is encouraged in Multisim through use of the Spectrum Analyzer. Multiple duplicate instruments may be utilized for further convenience in the study and testing of AC signals.

Parts

AC Voltage Source

Test Equipment

• Oscilloscope
• Spectrum Analyzer

Formulae

Power in watts

P = Vrms2/ RL             Equation 1-1

Procedure

742_Circuit-1-2.jpg
Figure 1-2

1. Connect the circuit illustrated in Figure 1-2.

2. Double-click on the AC Voltage Source. Select the Value tab and set Voltage (Pk) = 10V, Voltage Offset = 0V and Frequency = 1 kHz. Click OK.

3. Double-click on the Oscilloscope. Set the time division to 1 ms/Div and the Amplitude to 5 V/Div. Start the simulation and observe the 1 kHz frequency on the time versus amplitude scale. Stop the simulation.

4. Double-click on the Spectrum Analyzer. Select Set Span under Span Control and Lin under Amplitude. Under Frequency, set the Start and End frequencies. Since we are interested in a frequency of 1 kHz, select Start = 0 Hz and End = 2 kHz.

This will define the frequency settings for the beginning and end of the window, thus centering the 1 kHz frequency. Click Enter to enter the values. This method of setting the Spectrum Analyzer parameters is called the Frequency Control method.

5. Start the simulation. Place the cursor over the vertical marker line and drag the line to the center of the peak of the spectrum shown. Observe the frequency value in the lower-left portion of the window change as the marker is moved. Record the frequency and voltage values in Table 1-1.Verify that the frequency and amplitude values correspond to the AC Voltage Source settings.

6. Stop the simulation. Double-click on the AC Voltage Source and select Voltage Amplitude = 10V and Frequency = 10 kHz.

7. Since the frequency of interest is now 10 kHz, set the Center frequency to 10 kHz. Set Span to 10 kHz. This will designate a total window span of 10 kHz. Click Enter. Notice that the Start and End frequencies are automatically calculated. This technique is called the Span method. Note that one of the two illustrated methods may be used, but not both at once.

8. Start the simulation and move the marker to the left side of the window then the right side of the window, noting that the frequencies at each end correspond to the Start and End frequency settings. In order to obtain the Span setting, subtract the Start frequency from the End frequency. Record your results in Table 1-2. Verify the span setting. Record LIN voltage and mW values as in Step 5, converting the voltage to power in mW using Equation 1-1. Complete Table 1-1.

Expected Outcome

890_Frequency Spectrum of a 1 kHz Signal.jpg
Figure 1-3 Frequency Spectrum of a 1 kHz Signal

Data for Experiment 1

Frequency (measured)

LIN Voltage (V) (measured)

Power (mW) (calculated)

Frequency (Hz) (expected)

LIN Voltage (V) (expected)

1 kHz

 

 

 

 

10 kHz

 

 

 

 

Table 1-1

Frequency (Hz)

Start (Hz)

End (Hz)

Span (Hz) (measured)

Span (Hz) (expected)

10 kHz

 

 

 

 

Table 1-2

Additional Challenge

1. Set the amplitude of the AC Voltage Source in Figure 1-2 to 1 V and the frequency to 10 kHz.
2. Set Span = 10 kHz and Center Frequency = 8 kHz. Click Enter.
3. Verify that the Start and End frequencies are correct for the span and center frequencies selected.

Reference no: EM131728318

Questions Cloud

Determine the markup percentage : Kinsey Company has determined the following per unit amounts: Use the variable-cost approach to determine the markup percentage
Various formulas for calculating integration and ownership : Cost metrics for network, server, storage, and software usage have been described, along with various formulas for calculating integration and ownership costs
What are the types of interventions : Provide a short summary of the rationale for the review and the problemsthat the interventions are meant to address. - Provide a PICOT table for the selection
What research backs daniel pink idea of motivating employees : What research backs Daniel Pink's idea of motivating employees with purpose rather than more money?
Demonstrate the characteristics of the spectrum analyzer : The purpose of this simulation is to demonstrate the characteristic and operation of the Spectrum Analyzer as it applies to radio frequency (RF) communications.
Particular type of system : Analyze the notion that if an investigation is being performed on a particular type of system (e.g., Windows, Mac, etc.) that it is best for the investigator
Write an introduction to short fiction : Juan Dahlmann, the main character in "The South" is a man who has particular pride in his grandfather, Johannes Dahlmann and his Argentinian culture.
What are the payoffs of the finite asset : Assume a finite state of economy with three states whose payoff matrix is given by X = $30 $ 20 $ 10 $20 $15 $0.
Contrast the four operating systems : Compare and contrast the four operating systems, and provide arguments for choosing one of them: Microsoft Windows, Mac OS, Unix or Linux.

Reviews

Write a Review

Other Engineering Questions & Answers

  Characterization technology for nanomaterials

Calculate the reciprocal lattice of the body-centred cubic and Show that the reciprocal of the face-centred cubic (fcc) structure is itself a bcc structure.

  Calculate the gasoline savings

How much gasoline do vehicles with the following fuel efficiencies consume in one year? Calculate the gasoline savings, in gallons per year, created by the following two options. Show all your work, and draw boxes around your answers.

  Design and modelling of adsorption chromatography

Design and modelling of adsorption chromatography based on isotherm data

  Application of mechatronics engineering

Write an essay on Application of Mechatronics Engineering

  Growth chracteristics of the organism

To examine the relationship between fermenter design and operating conditions, oxygen transfer capability and microbial growth.

  Block diagram, system performance and responses

Questions based on Block Diagram, System Performance and Responses.

  Explain the difference in a technical performance measure

good understanding of Mil-Std-499 and Mil-Std-499A

  Electrode impedances

How did this procedure affect the signal observed from the electrode and the electrode impedances?

  Write a report on environmental companies

Write a report on environmental companies

  Scanning electron microscopy

Prepare a schematic diagram below of the major parts of the SEM

  Design a pumping and piping system

creating the pumping and piping system to supply cool water to the condenser

  A repulsive potential energy should be a positive one

Using the data provided on the webvista site in the file marked vdw.txt, try to develop a mathematical equation for the vdW potential we discussed in class, U(x), that best fits the data

Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd