Reference no: EM13975987
(1) Let a < c < b and α ∈ R \ {0}. Define f : [a, b] → R by
0, if x ≠ c
f(x) =
α if x = c.
Let g : [a, b] → R be a be a monotonically increasing function.
i) Show that f → R([a, b], g) if and only if g is continuous at c.
ii) If g is continuous at c, compute a∫b f dg.
(2) Let g : [a, b] → R be a continuous and monotonically increasing function, and suppose f ∈ R([a, b], g). Suppose f is redefined at a finite number of points in [a, b] and h is the resulting function. Show that h ∈ R([a, b] g) and
a∫b f dg = a∫b h dg.
Hint: Use the conclusions of Problem 1 above applied to the difference f - h.
(3) Let f : [0, 1] → R be defined by
x2 for x ∈ [0, 1] ∩ Q
f(x) =
0 for x ∈ [0, 1]\ Q.
i) Show that f is continuous only at x = 0.
iI) If 0 ≤ ξ ≤ ς ≤ 1 show that (ς + ξ/2)2 (ς - ξ) ≥ ¼ (ς3 - ξ3).
iii) Use the inequality in (ii) to show that f ∉ R([0,1]).
(4) Suppose f is bounded on [a, b] and continuous on (a, b). If g; [a, b] → R is a monotonically increasing function on [a, b] that is continuous at b, show that f ∈ R([a, b], g).
(5) Suppose f ∈ R([0,2], g) where g is defined by
1 for x ∈ [0, 1)
g(x)
x for x ∈ [1, 2].
Define
F(x) =0∫xf dg for x ∈ [0, 2].
Assume that f is continuous at x = 1. Show that F is differentiable at x = 1 if and only if f(1) = 0.
(6) Compute 0∫1 (3x2 + 2) dg, where
1 for x = 0
g(x) =
x+3 for x ∈ (0, 1]
Compounded annually what is the present value
: What amount would you have in a retirement account if you made annual deposits of $375 for 25 years earning 12 percent, compounded annually What is the present value of $2,200 earning 15 percent for eight years?
|
Calculate the temperature in the compression zone
: At the temperature calculated in (g), determine the wavelength of the maximum intensity and the total power emitted by the hot gas (using a surface area of 2Π5.5^2 for the flattened spheroid of gas).
|
Describe how the information obtained from the organizations
: Why is it best for large organizations like Dish to use both PEST and Porter's 5 Forces analysis in helping its leaders to understand their particular external environment?
|
Article analysis for setting up of operations in countries
: Article analysis for setting up of operations in foreign countries - Write a two- to three-page summarization of the articles.
|
Continuous and monotonically increasing function
: Let g : [a, b] → R be a continuous and monotonically increasing function, and suppose f ∈ R([a, b], g). Suppose f is redefined at a finite number of points in [a, b] and h is the resulting function. Show that h ∈ R([a, b] g) and
|
Is there generalization of this algorithm to quantum systems
: The Metropolis-Hastings algorithm is an efficient way of simulating classical ensembles using the Monte Carlo method. Is there a generalization of this algorithm to quantum systems? What I DON'T have in mind is Wick rotation to a classical Euclide..
|
Calculate the point prevalence for the last day of the month
: calculate the point prevalence for the last day of the month. (remeber, the population size will have changed fromt the start to the last day of the month.)
|
Determine the financial feasibility of the project
: Compute the NPV in the IRR to determine the financial feasibility of the project - Reflect on concepts of time value of money, net present value, internal rate of return, and purchasing options.
|
How far was the mirrow moved
: A Michelson interferometer is irradiated with light of wavelength 633 nm (He-Ne laser). When one of the mirrors is moved, 800 fringe pairs (each fringe pair is an adjacent dark and bright line) pass by a fixed point in the viewing pattern. How far..
|