Construct a hard-core predicate

Assignment Help Term Paper
Reference no: EM13792

Question 1

Which of the following statements is true for a trapdoor function f?

Answer

a. The function f can be computed efficiently, no algorithm can invert it unless with negligible probability or unless the algorithm is given a trapdoor

b. The function f cannot be computed efficiently but there exists an algorithm that computes it efficiently using a trapdoor

c. The function f cannot be computed efficiently but there exists a polynomial-time algorithm that can invert f's output on a random input unless with negligible probability; moreover, there exists an algorithm that, given a trapdoor, can compute f

d. The function f can be computed efficiently but no polynomial-time algorithm can invert f's output on a random input unless with negligible probability; moreover, there exists an algorithm that, given a trapdoor, can compute f's inverse function

Question 2

Which of the following statements summarizes the properties of a hard-core predicate P for a one-way function f?

Answer

a. P is hard to compute given the input of f but easy to compute using the output of f

b. P is easy to compute given the input of f but hard to compute using the output of f

c. P is hard to compute given the input of f and hard to compute using the output of f

d. none of the above

Question 3

For a still merely intuitive notion of "secure" (e.g., it is hard to guess info about the plaintext from the ciphertext), which cryptographic primitives are sufficient to construct a "secure" public-key cryptosystem?

Answer

a. a one-way function f and a hard-core predicate P for f

b. a one-way trapdoor function f and a hard-core predicate P for f

c. a one-way trapdoor permutation f

d. a hard-core predicate P for f

Question 4

Consider algorithms B.10, B.11, B.12, and B.13 in the [KL] textbook. Which one(s) among these does not run in polynomial time in its input length?

Answer

a. B.10 and B.11

b. B.10 and B.12

c. B.11 and B.13

d. B.12

Question 5

Factoring is the problem of computing, on input a positive integer n, a factorization of n in terms of prime powers. This problem can be "easy (i.e., there exists a polynomial-time algorithm that solves it) or "(conjectured to be) hard" (i.e., there seems to be no polynomial-time algorithm that solves it) depending on the (sub)set of integers from which n is chosen. In which of these cases factoring n is easy?

Answer

a. n is a power of 2

b. n is a prime

c. n is a prime power (see exercise 7.11 in [KL])

d. All of the above

Question 6

Factoring is the problem of computing, on input a positive integer n, a factorization of n in terms of integer powers of prime numbers. This problem can be "easy" (i.e., there exists a polynomial-time algorithm that solves it) or "(conjectured to be) hard" (i.e., there seems to be no polynomial-time algorithm that solves it) depending on the (sub)set of integers from which n is chosen. De?ne the trial division algorithm D to solve the factoring problem and study its running time t_D(n). Given this algorithm and its running time, we want to infer considerations on factoring n being easy or conjectured to be hard when n is chosen among products of two primes (i.e., n = pq for some primes p, q). Let m_easy(n) be a value for min(p, q) such that factoring n is easy and m_hard(n) be a value for min(p, q) such that factoring n may be conjectured to be hard. Which functions would you select as most meaningful for t_D(n), m_easy(n), m_hard(n)?

Answer

a. t_D(n)=O(n2); m_easy(n)=O(log n); m_hard(n)=O(square root of n);

b. t_D(n)=O(square root of n); m_easy(n)=O(square root of n); m_hard(n)=O(n);

c. t_D(n)=O(square root of n); m_easy(n)=O(polylog n); m_hard(n)=O(n);

d. t_D(n)=O(square root of n); m_easy(n)=O(polylog n); m_hard(n)=O(square root of n);

Question 7

Computing discrete logarithms is the problem that takes as input the description of a cyclic group (G;*), the group's order m, the group's generator g, an element y in G, and asks to compute an integer x in Zm such that g *...*g = y, where there are x-1 occurrences of *. This problem can be "easy" (i.e., there exists a polynomial-time algorithm that solves it) or "(conjectured to be) hard" (i.e., there seems to be no polynomial-time algorithm that solves it) depending on the group G considered. In which of these cases computing discrete logarithms is easy?
Answer

a. G is Zm, * is addition mod m

b. G is Zm, * is multiplication mod m

c. G is Zm, * is division mod m

d. All of the above

Question 8

Consider the problem of computing discrete logarithms in a cyclic group (G,?), with group's order m; that is, given the group's generator g, an element y ∈ G, compute an integer x ∈ Zm such that g ? • • • ? g = y, where there are x - 1 occurrences of ?. Then consider the exhaustive search algorithm to search for the discrete logarithm of y in base g for a cyclic group G of order m. Given this algorithm and its running time t(m,n), we want to infer considerations on computing discrete logarithm in G being easy or conjectured to be hard depending on the choices of m as a function of the length n of the group elements. Let m_easy(n) be a value for m such that computing discrete logarithms in G is easy and m_hard(n) be a value for m such that computing discrete logarithms in G may be conjectured to be hard. Which functions would you select as most meaningful for m_easy(n), m_hard(n)?

a. m_easy(n)=O(n); m_hard(n)=omega(n)

b. m_easy(n)=O(poly(n)); m_hard(n)=O(poly(n))

c. m_easy(n)=O(poly(n)); m_hard(n)=omega(poly(n))

d. m_easy(n)=O(n); m_hard(n)=O(n)
5 points

Question 9

Consider the following functions.
1) g1:{0,1}n-->{0,1}n, defined as g1(x)=x xor p, for each x in {0,1}n and for some known value p in {0,1}n
2) g2:{0,1}n-->{0,1}n, defined as a monotone function over the set {0,1}n
3) g3:{0,1}2n-->{0,1}n, defined as g3(x1,x2)=x1 xor x2 for each (x1,x2) in {0,1}2n

Which of the following is true?

Answer

a. g1 is one-way, g2 and g3 are not one-way

b. g2 is one-way, g1 and g3 are not one-way

c. g3 is one-way, g1 and g2 are not one-way

d. none of them is one-way

Question 10

Let f be a one-way function. Consider the following functions.

1) g1(x1,x2)=(f(x1),x2) for each (x1,x2) in its domain
2) g2(x)=(f(x),f(f(x))) for each x in its domain
3) g3(x1,x2)=(f(x1),x1 xor x2) for each (x1,x2) in its domain

Which of the following is true?

Answer

a. If f is one-way then g1 is one-way, g2 and g3 are not one-way

b. If f is one-way then g2 is one-way, g1 and g3 are not one-way

c. If f is one-way then g1 and g2 are one-way, g3 is not one-way

d. If f is one-way then g1, g2 and g3 are one-way

Question 11

You have to choose the length of the modulus n for the RSA trapdoor permutation in use within your public-key cryptosystem. The attacker has one of the following resources: (a) a single computer, (b) a collection of computers distributed across the Internet, or (c) a quantum computer.

Which of the following lengths for n would you choose?

Answer

a. (a): 1024; (b): 2048; (c): 4096

b. (a): 1024; (b): 2048; (c): I would not use RSA

c. (a): 2048; (b): 1024; (c): I would not use RSA

d. (a): 512; (b): 1024; (c): 2048

Question 12

Which of these assumptions is sufficient to construct a one-way function?

a. The hardness of factoring integers that are product of two primes of the same length

b. The hardness of computing discrete logarithms modulo primes

c. The hardness of inverting the RSA function

d. Any of the above

Question 13

Which of these assumptions is known to be sufficient to construct a one-way permutation?

Answer

a. The hardness of factoring integers that are product of two primes of the same length

b. The hardness of computing discrete logarithms modulo primes

c. The hardness of inverting the RSA function

d. The hardness of computing discrete logarithms modulo primes or inverting the RSA function

Question 14

Which of these assumptions is known to be sufficient to construct a trapdoor permutation?

a. The hardness of factoring integers that are product of two primes of the same length

b. The hardness of computing discrete logarithms modulo primes

c. The hardness of inverting the RSA function

d. All of the above

Question 15

Which of these assumptions is sufficient to construct a hard-core predicate?

a. The hardness of factoring integers that are product of two primes of the same length

b. The hardness of computing discrete logarithms modulo primes

c. The hardness of inverting the RSA function

d. Any of the above

Reference no: EM13792

Questions Cloud

What is the probability : Find the probability of given case.
Non-annual interest rates and annuities : Theory of Interest- Non-annual interest rates and annuities
Write pl-sql procedures and functions : Write PL/SQL procedures and functions to populate and query that database
Implement the lexical and syntactic analysis : Implement the lexical and syntactic analysis of Minifun programming language.
Construct a hard-core predicate : Construct a hard-core predicate
Write a program that uses the curve class hierarchy : Write a program that uses the curve class hierarchy. The program should define several different objects, output their area, circumference, etc. It should also use the printcurve function.
Internal audit : Describe and evaluate this type of internal audit. What types of organisation would it be most useful for?
Build the gui layout of the game : Build the Build the GUI layout of the game in java.
Evaluate the basis for the payment to the lender : Evaluate the basis for the payment to the lender and basis for the payment to the company-counterparty.

Reviews

Write a Review

Term Paper Questions & Answers

  Generation and evaluation of alternative solutions

Write two pages for "Generation and Evaluation of Alternative Solutions" for Love Canal case. Total 2 Pages for "Generation and Evaluation of Alternative Solutions" for love canal case and including references.

  Paper on deming theory

Paper on Deming theory: Dr. W. Edwards Deming developed a method for the quality improvement process. He believed that the identification and correction of defects after production is not effective.

  Paper on what does autism play in savant syndrome

Write a Paper on Topic:   What does autism play in savant syndrome?

  Write a paper on italy and its democracy

Write a Paper on Topic:  Italy and Its Democracy,  Affecting the Event by “The Economist” and  Democracy Appear to Work with including references.

  Climate change and the north

The essay topic is: Climate Change and the North (with particular Focus on the Inuit).  The purpose of this research paper is to help you engage with current events and contemporary challenges concerning Aboriginal people in Canada.

  Should manitoba adopt a single transferable vote

Write a paper on Topic: Should Manitoba adopt a single transferable vote (STV) electoral system for provincial elections?

  In crisis and reform

In Crisis and Reform:  Current Issues in American Punishment (p. 126), Alexis Durham writes,Please write a reaction paper (4-6 pages in length) to the quote in which you explore global correctional objectives

  Role play as the corporate social responsibility officer

Your Corporate Social Responsibility Officer  Handout and Rubric, This paper gives you an opportunity to "role play" as the Corporate Social Responsibility Officer for an organization of your choice.

  Operationalize sustainability

This assignment is designed for you to analyze an organization and to help develop a plan for that organization to better Operationalize sustainability in the future.

  Gulliver''s view of science

Write on  Gullivers view of science or politics, Jonathan Swift’s view about science is explicitly portrayed in this novel Gulliver’s travel. Jonathan swift says the scientific researches and the experiments will be utter waste of time and it will be..

  Designing a computer interface with visual disability

The topic is about designing a computer interface to people with visual disability (blindness- colour blindness) also , how to apply decision support systems to such interfaces..

  Social issue

Answer the following questions as these general questions pertain to the specific issue selected.The questions that you will cover with respect to your choice of broad social issue in the paper are given.

Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd