Calculate the maximum and minimum principal stresses

Assignment Help Mechanical Engineering
Reference no: EM131399546

Problem 1: The grooved circular shaft shown in Figure 1 consists of two segments of diameter D = 440 mm joined by a groove of diameter d = 400 mm with groove radius r = 20 mm. The shaft is loaded simultaneously by an axial force P = 50 kN along the x-axis, a bending moment M= 10 kN-m about the z-axis, and a torque T= 20 kN-m about the x-axis.

947_Figure1.png

a) Calculate the maximum and minimum principal stresses, and describe where they occur.

b) Calculate the maximum shear stress, and describe where it occurs.

c) Calculate the maximum octahedral shear stress, and describe where it occurs.

d) Calculate the normal stress on the plane with the maximum octahedral shear stress.

Problem 2: An electrical contact contains a flat spring in the form of a cantilever beam of length L = 50 mm, shown in Figure 2. The cross section of the beam is rectangular with thickness t = 1 mm (shown) and width b (not shown). The end load P is equal to the sum Wo + F, where Wo = 5 N and F varies continuously in time from 0 to Fmax. The yield strength of the material is σy = 800 MPa, the ultimate strength is σu =1200 MPa, and the endurance limit is σe = 400 MPa. Assume that the material is ductile and will fatigue due to yielding.

2339_Figure2.png

a) Use the Soderberg criterion to find the minimum value of the width b required to prevent fatigue failure. Take Fmax = 10 N.

b) Use the Modified Goodman criterion (for yield) to find the minimum value of the width b required to prevent fatigue failure. Take Fmax = 10 N.

c) If the value of Fmax is increased to 15 N, and the value of b is the one you obtained in part a), then extend the Soderberg criterion appropriately to predict the fatigue life of the beam.

Problem 3: A machine component of channel cross-sectional area is loaded by equal and opposite forces P of magnitude 3 kN, as shown in Figure 3. All dimensions of length in the figure are in millimeters. Point O is located at the center of curvature of the unstressed semi-circular segment of the component. Use the following notation: r is the radial distance from point O to any point on the cross-section in the semi-circular segment of the component, Rc is the radial distance from point 0 to the centroid of any cross-section in the semi-circular segment of the component, and Rn is the radial distance from point O to the neutral fibers (due to the bending moment, alone) on any cross-section in the semi-circular segment of the component.

1497_Figure3.png

a) Calculate Rc, Rn and the eccentricity e of the cross section.

b) Calculate the normal force and the bending moment at the cross section containing points A and B shown in the figure. Indicate clearly whether the normal force is tensile or compressive, and whether the bending moment is positive or negative according to the sign convention introduced in class.

c) Calculate the normal stress (σθθ)A at point A, and show that the contribution to (σθθ)A from the normal force at the cross section is small compared to the contribution from the bending moment.

d) Calculate the normal stress (σθθ)B at point B, and show that the contribution to (σθθ)B from the normal force at the cross section is small compared to the contribution from the bending moment.

e) On the section A-B in Figure 3, neglect the contribution to σθθ(r) from the normal force, and find the variation of the radial stress σrr(r) with radial distance r from the center of curvature of the component. Plot the variation of σrr(r)with r. In particular, find the radial stress σrr at r = 40mm, r = 45mm, r = 50- mm, r = 50+ mm, r = 65 mm, and r = 80 mm. Find the maximum value of σrr and the value of r at which it occurs.

Reference no: EM131399546

Questions Cloud

Write a description of the client system : So far in this course, you have examined the three levels of social work practice: micro, mezzo and macro. You also have explored how the GIM steps and specific practice skills apply to each level of practice. In order to demonstrate your understa..
Choosing a particular operating system : List and describe the business drivers behind choosing a particular operating system. What factors might influence IT to choose between open systems versus proprietary systems versus server operating systems?
Create a method for the class binarytree : Suppose we want to create a method for the class BinaryTree that decides whether two trees have the same structure.
Outputs the digits in reverse order : Asks the user to enter a positive integer greater than 0 Validates that the entry is a positive integer Outputs the digits in reverse order with a space separating the digits
Calculate the maximum and minimum principal stresses : The grooved circular shaft shown in Figure 1 consists of two segments of diameter D = 440 mm joined by a groove of diameter d = 400 mm with groove radius r = 20 mm. Calculate the maximum and minimum principal stresses, and describe where they occur
Draw the unique binary tree : Knowing the preorder and inorder traversals of a binary tree will enable you to uniquely define the tree. The same is true for the postorder and inorder traversals.
Describe the companys csr initiatives : MGMT 3123- Describe the company's CSR initiative(s), citing the source of your information. Explain how this company's CSR practices or policies benefit society.
Give numerical values for the interval : Use information given by the applet to explain whether or not the Empirical Rule applies for Ideal Height.- Assuming the Empirical Rule applies, give numerical values for the interval that will contain about 99.7% of the data values.
Person in kilograms and outputs : Write a program that prompts the user to enter the weight of a person in kilograms and outputs the equivalent weight in pounds. Output both the weights rounded to two decimal places. (Note that 1 kilogram equals 2.2 pounds.) Format your output with..

Reviews

Write a Review

Mechanical Engineering Questions & Answers

  Package design

Package Design Brief: Assume you are the packaging engineer for a large consumer products company. In this company, the Packaging Design Briefs are initiated by the marketing group and forwarded to the Package Engineering group.

  Mechanical engineering questions

Define dynamic viscosity, Determine the centroid, Pressure due to the height of liquid, Advantage of changing the liquid, Calculate the total moment about the hinge of the seal gate.

  Automatic control

DOF system and Find the differential equation describing the system

  Write a paper on boyle''s law

Write a paper on Boyle's law and describe Compression and Combustion stroke . Also explain Charles's law and illustrate SI engine and CI engine.

  Verify the law for parallelogram of forces

To Verify the law for parallelogram of forces, law for triangle of forces and law of polygon of forces. These laws are very useful to calculate unknown forces in very short time.

  Discharge pressure of the compressor

What is the discharge revised discharge pressure of the compressor.

  The Case for Global Accounting Standards

The role of IFRS in both developing and developed capital markets.

  Wind turbine

Wind turbines are becoming more and more common as a method of energy production, wind turbines by their very nature are dynamic and are subject to and create their own internal and external kinematics and kinetics.

  Advanced design methodologies

8 x product engineering and design review (week 2 – 12), ~3 pages per item which must contain a brief description of the product then delve into concepts such as materials selection, manufacturing methods, life cycle analysis, recyclability and overa..

  Design of absorption column and the cooler

Design of absorption column and the cooler. Process design of other units should be completed along with pipe sizes.

  Determine the maximum total bending moment

Determine maximum total bending moment (static plus dynamic) of the beam under steady-state conditions.

  Force of the water on the gate

Determine the magnitude of the horizontal and vertical components of the force of the water on the gate.

Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd