Autumn 2000 exam

Assignment Help Basic Statistics
Reference no: EM131003814

PART A:

Question 1:

a. Data on the rates of return for two different stocks, were collected over a fifty year period. The rate of return is defined as, the increase in value of the portfolio (including any dividends or other distributions) during the year, divided by its value at the beginning of the year. The rate of return is recorded as a percentage and can be either positive or negative.

Following are some descriptive statistics, prepared in MS Excel, on these rates of return. Use this information to answer parts i. - iii.

2088_Descriptive statistics of stocks.jpg

21_Comparison of rates of return.jpg

Assume that the history of stocks A and B is a useful guide to what may be expected of them in the future.

i. If you were to invest in the stock with the highest average return, which stock would you choose and why?

ii. If you were to invest in the stock with the least risk, which stock would you choose and why?

iii. Is the shape of the distribution of returns for stock A skewed or symmetric. If skewed include the direction of skewness. List three indicators from the descriptive statistics provided above to justify your decision.

Following is a frequency distribution prepared in MS Excel, showing the distribution of the rates of return for stock B.

87_Distribution of the rates of return.jpg

iv. Use this frequency distribution to construct a histogram to display these rates.

Following is an ogive comparing the rates of return for stocks A and B.

404_Ogive comparing the rates of return for stocks.jpg

v. Use the ogive to estimate the number of years in which the average rate of return for stock A exceeded 30%.

b. Grace Bros recently advertised a sale on ladies clothing. Fifty customers were randomly selected and the amount spent at the sale was recorded. These amounts are summarised below.

Amount spent ($)                     No. customers
> 0 up to and including 50                 3
> 50 up to and including 100              6
> 100 up to and including 150            7
> 150 up to and including 200           11
> 200 up to and including 250           15
> 250 up to and including 300            8
Total 50

i. Use the statistics functions on your calculator to estimate the mean and standard deviation amount spent by the fifty customers.

ii. Your answers to part i. are only estimates. Explain why.

Question 2:

a. Surveys of teenage girls have shown that 35% are smokers and 45% are drinkers (consume alcohol on a regular basis). Does it necessarily follow that 80% of teenage girls are either smokers or drinkers? Explain.

b. The amount of petrol, which an estate agent used in driving prospective buyers around the city to inspect home units, was recorded each week for 200 weeks. The amounts were found to follow an approximate normal distribution with a mean of 75 litres and standard deviation of 12 litres.

i. Find the probability the fuel consumption was more than 70 litres.

ii. Find the probability the fuel consumption was less than 60 litres.

iii. Estimate the number of weeks the fuel consumption was less than 60 litres.

iv. What fuel consumption was exceeded in only 20 out of the 200 weeks?

c. Leakage from underground petrol tanks at service stations can damage the environment. It is estimated that 25% of these tanks leak. 15 tanks are chosen at random, independently of each other, and examined.

i. What is the expected number of leaking tanks?

ii. What is the probability that 10 or more of the 15 tanks leak?

iii. What is the probability that fewer that three leak?

Question 3:

a. A financial controller is interested in the number of defective items produced each hour by a machine in the factory. A random sample of 25 hours produced the following number of defectives per hour.

10 6 5 7 8 4 5 5 6 8

4 3 7 8 4 10 5 3 2 0

5 8 9 3 7

i. Find a point estimate of the population mean number of defectives that the machine produces per hour.

ii. Find the standard error of the estimate in i.

iii. If we assume that the number of defectives in the population follows a normal distribution, construct a 95% confidence interval estimate for the mean number of defectives that the machine produces per hour.

iv. If you were told that the population standard deviation of the number of defectives that the machine produced per hour was 1.80, would it change your answer to part iii.? If so, find the new answer. If not, explain why.

b. A fast food franchiser is considering building a restaurant at a certain location. According to a financial analysis, a site is suitable only if the number of pedestrians passing the location averages more than 100 per hour. A random sample of 50 hours produced a mean of 110 pedestrians and a standard deviation of 12 pedestrians per hour.

i. Do these data provide sufficient evidence to establish that the site is acceptable? (Use α = 0.05)

ii. What is the consequence of Type I error here?

iii. Considering your answer to part ii., should you select α to be large or small? Explain

Question 4:

a. A homebuilder's association lobbying for various home subsidy programs argued that, during periods of high interest rates, the number of building permits issued decreased drastically, which in turn reduced the availability of new housing. Data relating housing loan interest rates (%) and the number of building approvals in thousands, were collected. The data appear below.

Year     Interest rates (%) (housing loans)      Building approvals (000s)
1969                       7.50                                            155.9
1970                       8.25                                            141.8
1971                       8.25                                            151.3
1972                       7.75                                            188.4
1973                       7.75                                            179.7
1974                       9.50                                            121.3
1975                      11.50                                           146.1
1976                      10.50                                           141.4
1977                      10.50                                           123.8
1978                      10.50                                           127.5
1979                      10.50                                           145.3
1980                      10.50                                           156.5
1981                      11.50                                           138.5
1982                      13.50                                           116.4
1983                      12.50                                           150.8
1984                      11.50                                           160.5
1985                      12.00                                           140.7
1986                      15.50                                           120.8
1987                      13.50                                           151.2
1988                      17.00                                           186.4
1989                      16.50                                           141.9
1990                      13.00                                           127.4
1991                      10.50                                           151.5
1992                        9.50                                           172.3
1993                        8.75                                           188.8
1994                      10.50                                           171.1
1995                        9.75                                           124.7
1996                        7.20                                           136.6
1997                        6.70                                           156.5

MS Excel was then used to generate the following scatterplot.

1839_Scatterplot-approvals vs interest rates.jpg

i. From the scatterplot, does it appear that the home builder's association argument is true, ie does it appear that the number of building permits decreased drastically during periods of high interest rates? Explain.

ii. There appears to be one obvious outlier in the scatterplot. In which year does the outlier occur?

iii. It appears this outlier is a data entry error. Explain why seems the most logical conclusion and how we could best fix the error before fitting the regression.

After fixing the error, MS Excel is used to fit a simple linear regression to the data and the output produced by Excel follows.

1319_Summary output-approvals vs interest rates.jpg

iv. Use the output provided to determine the correlation coefficient relating interest rates and number of building permits issued. Interpret this value.

v. Use the output provided to determine whether a significant linear correlation exists between interest rates and number of building permits offered. Use a 1% significance level.

vi. If the test in part v. was repeated using a level of significance of 5%, would this change your conclusion? If yes, how and why would the conclusion change. If not, why not.

b. For a test market, find the sample size needed to estimate the true proportion of customers satisfied with a certain new product to within ±0.01 at the 95 percent confidence level. Assume you have no information about the value of the proportion.

PART B:

1. Which of the following is an example of a population parameter?

A. x‾
B. n
C. μ
D. s
E. all of the above

2. When a distribution is symmetrical and has one mode, the highest point on the curve is referred to as the

A. range.
B. mode
C. median
D. mean
E. mode, median and mean, but not the range.

3. For a skewed distribution, the best measure of central tendency to report

A. is the mean.
B. is the median.
C. is the range.
D. depends on the direction of skewness
E. is the mode.

4. The actual number of cups, which can be made from a sample of 20 different brands of coffee makers, is given below.

11.0 10.5 9.0 11.0 8.5 8.5 8.5 10.5 9.5 9.0

11.5 10.5 11.0 9.0 9.5 11.0 9.5 11.0 9.0 10.5

The median number of cups from these coffee makers is

A. 9.0
B. 9.5
C. 9.75
D. 10.0
E. 10.5

5. In a grouped frequency distribution the class intervals should be mutually exclusive. This means that they should be

A. of the same length.
B. open ended.
C. not open-ended.
D. not overlapping.
E. none of the above.

6. The random variable "the number of STD phone calls made per month" is

A. quantitative and discrete.
B. quantitative and continuous
C. qualitative and discrete
D. qualitative and continuous
E. categorical.

7. A coin is tossed five times. The probability of obtaining only one head in five tosses is

A. 1/64
B. 1/32
C. 1/16
D. 5/16
E. 5/32

Use the following information to answer questions 8., 9. and 10.

The owner of a restaurant is interested in studying the demand by patrons for the Friday to Sunday weekend time period. Records were maintained that indicated whether a dessert was ordered and the gender of the individual. The results were as follows

Dessert ordered    Male      Female
Yes                        96          40
No                        224        240

A patron is selected at random.

8. Find the probability the patron will be male.

A. 0.3
B. 0.7
C. 0.192
D. 0.373
E. 0.533

9. Find the probability the patron orders dessert and is female.

A. 0.067
B. 0.106
C. 0.693
D. 0.627
E. 0.160

10. Find the probability the patron is a male, given he did not order dessert.

A. 0.747
B. 0.483
C. 0.373
D. 0.300
E. 0.933

Use the following information to answer questions 11. and 12.

In a clothing factory, the average number of machines that are inoperable on a given day is three. Machine breakdowns occur randomly and independently.

11. What is the probability there will be six inoperable machines on any given day?

A. 0.966
B. 0.050
C. 0.986
D. 0.028
E. 0.077

12. What is the probability there will be less than 2 inoperable machines over two days?

A. 0.199
B. 0.398
C. 0.062
D. 0.019
E. 0.017

13. Z is the standard normal random variable. Find P(Z < 1.70)

A. 0.3577
B. 0.8577
C. 0.4554
D. 0.9554
E. 0.0446

14. The length of time customers queue for service from a bank teller follows a normal distribution with μ = 3 and σ = 1 minutes. A random sample of 16 customers is chosen. The probability that the average waiting time in the queue is less than 2.5 minutes can be found using

A. P(Z < -0.5)
B. P(t < -0.5)
C. P(Z < 2)
D. P(Z < -2)
E. P(t < -2)

15. After taking a sample and calculating x‾, a statistician says, "I am 88 percent confident that the population mean is between 106 and 122. What does she really mean?

A. The probability is 0.88 that μ is between 106 and 122.
B. The probability is 0.88 that μ = 114, the midpoint of the interval.
C. 88 percent of the intervals calculated from samples of the same size will contain the population mean.
D. All of the above ie A., B. and C.
E. A. and C. only.

Use the following information to answer questions 16. and 17.

Suppose we wish to test whether a population proportion is significantly larger or smaller than 0.2. We take a sample of 100 and find pˆ = 0.15.

16. What should our alternative hypothesis be?

A. p = 0.15
B. p ≠ 0.15
C. p < 0.2
D. p ≠ 0.2
E. p = 0.2

17. The standard error of the proportion would be

A. 0.0335
B. 0.0400
C. 0.0200
D. 0.0016
E. 0.0357

Use the following information to answer questions 18., 19 and 20.

2163_Summary output of the regression line.jpg

847_Histogram of residuals ans speed residual plot.jpg

Data on the speed of a car and it's fuel consumption were collected on 15 randomly selected Ford Escorts. The manufacturer was interested in how the fuel consumption varied as the car's speed increased. A least squares regression line was fitted to the data using MS Excel. The output from this regression follows. Use this output to answer questions 18., 19 and 20.


18. The simple linear regression equation for predicting fuel consumption by using speed as an explanatory variable is given by

A. yˆ= 11.058x - 0.015
B. yˆ= 11.058 - 0.015
C. yˆ= 11.043x
D. yˆ= 11.058 - 0.015x
E. cannot be determined with out the data set.

19. The standard error of estimate is

A. 3.905
B. 2.122
C. 0.023
D. 6.016
E. unable to be determined with out the data set.

20. The two plots provided, can be used to identify violations in the assumptions of the error variable. Choose the most correct statement regarding these assumptions for this regression.

A. The residual plot indicates a linear model may be appropriate.
B. The residual plot indicates the errors have constant variance.
C. The residual plot indicates a non-linear model may be appropriate.
D. The histogram of the residuals indicates the errors are normally distributed.
E. The two plots indicate there are no violations in the assumptions of the error variable.

Reference no: EM131003814

Questions Cloud

Write a program to count number of inversions : Write a Program to count number of inversions in an input file of integers using Brute force method
Write a recursive function sumtreenodehelper : Write a recursive function sumTreeNodeHelper that sums the elements of a binary search tree starting with the smallest element and adding elements in order up to the largest element and prints the running sum as each new value (ie. Node->val) is adde..
Find the average velocity of the particle : A particle moves from x = 40 cm to x = 50 cm in 5 s in one location of its path. In another location it was found that the particle moved from x = 500 cm to x = 520 cm in 2 s. Is the particle accelerating? If so, find the acceleration if the parti..
Call a statement in any language a computed case : 1. We call a statement in any language a computed case type of statement if it branches to one of several areas in the program, depending on the value of a variable. Discus the positive and negative aspects of a computed case statement. In particular..
Autumn 2000 exam : Data on the rates of return for two different stocks, were collected over a fifty year period. The rate of return is defined as, the increase in value of the portfolio (including any dividends or other distributions) during the year, divided by it..
If one person has written a component : If one person has written a component but others have revised it, who is responsible if the component fails? What are the legal and ethical implications of reusing someone else's component?
Give some examples of how a web browser : Give some examples of how a web browser can be configured to protect against some of the threats listed in this weeks chapters. Make sure your examples are clear and what can be changed in the browser.
What average force did the wood exert on the bullet : An 10.0 g bullet, moving at 200 m/s, goes through a stationary block of wood in 3.0 x 10-4 s, emerging at a speed of 200 m/s. What average force did the wood exert on the bullet
Explain the moaning of the entries of the matrix : The ones in each row indicate the choices of the person to the left of the row. For example, x chooses y and w as her best friends while y chooses x and z. Explain the moaning of the entries of the matrix AAt.

Reviews

Write a Review

Basic Statistics Questions & Answers

  Statistics-probability assignment

MATH1550H: Assignment:  Question:  A word is selected at random from the following poem of Persian poet and mathematician Omar Khayyam (1048-1131), translated by English poet Edward Fitzgerald (1808-1883). Find the expected value of the length of th..

  What is the least number

MATH1550H: Assignment:  Question:     what is the least number of applicants that should be interviewed so as to have at least 50% chance of finding one such secretary?

  Determine the value of k

MATH1550H: Assignment:  Question:     Experience shows that X, the number of customers entering a post office during any period of time t, is a random variable the probability mass function of which is of the form

  What is the probability

MATH1550H: Assignment:Questions: (Genetics) What is the probability that at most two of the offspring are aa?

  Binomial distributions

MATH1550H: Assignment:  Questions:  Let’s assume the department of Mathematics of Trent University has 11 faculty members. For i = 0; 1; 2; 3; find pi, the probability that i of them were born on Canada Day using the binomial distributions.

  Caselet on mcdonald’s vs. burger king - waiting time

Caselet on McDonald’s vs. Burger King - Waiting time

  Generate descriptive statistics

Generate descriptive statistics. Create a stem-and-leaf plot of the data and box plot of the data.

  Sampling variability and standard error

Problems on Sampling Variability and Standard Error and Confidence Intervals

  Estimate the population mean

Estimate the population mean

  Conduct a marketing experiment

Conduct a marketing experiment in which students are to taste one of two different brands of soft drink

  Find out the probability

Find out the probability

  Linear programming models

LINEAR PROGRAMMING MODELS

Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd