Reference no: EM13805234
Let x be a random variable representing the SAT math score of student. We may assume that x has a normal distribution and that the population standard deviation is 25. A large university claims the average SAT math score for incoming freshman is 650. You suspect that this claim is too high and decide to test the claim. You select a random sample of 75 incoming freshman and find the sample mean SAT math score to be 645. If you assume that the population mean is 650, find the P-value corresponding to the hypothesis that the average SAT score is less than 650 (i.e. left-tail test).
A. 0.037
B. 0.061
C. 0.042
D. 0.053
Question 2
A random sample of 10 mathematics dictionaries had an average price of $17.50 with a sample standard deviation of $3.85. Find the 95% confidence interval for µ, the population mean price of all mathematics dictionaries.
A. (14.64, 20.36)
B. (14.98, 20.02)
C. (14.34, 20.66)
D. (14.75, 20.25)
Question 3
In a survey of 900 adults, 240 said that they watched the World Cup final on television. Using these sample statistics, calculate the margin of error, E, for a 90% confidence interval for the proportion of all adults that watched the World Cup final on television.
A. 0.019
B. 0.024
C. 0.029
D. 0.034
Question 4
Let x be a random variable representing the length of a cutthroat trout in Pyramid lake. A friend claims that the average length of trout caught in this lake is 19 inches. To test this claim we find that a sample of 13 trout has a mean length of 18.1 inches with a sample standard deviation of 3.3 inches. The population standard deviation is unknown. If you assume that the population mean is 19, find the P-value corresponding to the hypothesis that the average cutthroat trout length is different from 19 (i.e. two-tail test).
A. 0.295
B. 0.324
C. 0.162
D. 0.344
Question 5
In a certain region, the mean annual salary for plumbers is $51,000. Let x be a random variable that represents a plumber's salary. Assume the standard deviation is $1300. If a random sample of 100 plumbers is selected, what is the probability that the sample mean is greater than $51,300?
A. 0.32
B. 0.03
C. 0.41
D. 0.01
Question 6
Find the critical value tc for a 95% confidence level when the sample size is 18. Use Table 4 on page A10 (Appendix)
A. 1.740
B. 2.110
C. 2.101
D. 1.734
Question 7
The lengths of Atlantic croaker fish are normally distributed, with a mean of 10 inches and a standard deviation of 2 inches. Let x be a random variable that represents the length of an Atlantic croaker fish. Suppose an Atlantic croaker fish is randomly selected. Find the probability that length of the fish is between 8.5 inches and 10.5 inc
A. 0.63
B. 0.54
C. 0.37
D. 0.77
Question 8
Let x be a random variable representing the SAT math score of student. We may assume that x has a normal distribution and that the population standard deviation is 25. A large university claims the average SAT math score for incoming freshman is 650. You suspect that this claim is too high and decide to test the claim. You select a random sample of 75 incoming freshman and find the mean SAT math score to be 645. If you assume that the population mean is 650, find the standardized test statistic based on the sample.
A. -1.65
B. -1.73
C. 1.73
D. 1.65
Question 9
Let x be a random variable representing the length of a cutthroat trout in Pyramid lake. A friend claims that the average length of trout caught in this lake is 19 inches. To test this claim we find that a sample of 13 trout has a mean length of 18.1 inches with a sample standard deviation of 3.3 inches. The population standard deviation is unknown. If you assume that the population mean is 19, find the standardized test statistic based on the sample.
A. -0.914
B. -0.983
C. -1.215
D. .1.021
Question 10
Find the area below the standard normal curve to the right of z = 2.
A. 0.011
B. 0.022
C. 0.978
D. 0.489
Continuous improvement of a company
: Assume that you have recently been hired as the director of continuous improvement of a company. You are an outside hire with limited history of the firm and personal capital at the firm, and you are responsible for lean production, total quality ..
|
What role would the pmt function and vlookup function play
: What role would the PMT function and the VLOOKUP function play in what-if analysis? Include in your answer an explanation of what what-if analysis and how those functions fit in with it
|
Explain why nafta has not been good for the united states
: It is a debate and i was assigned the no side. so the paper has to be about why nafta has not been good for the United States.
|
Compare two of philosophers discussion socrates and plato
: Compare and contrast at least two of the philosophers discussed in the text: Socrates, Plato, Aristotle, St. Augustine, Thomas Aquinas, Machiavelli, Hobbes, Locke, Rousseau, Burke, Mill, and/or Marx.
|
A random variable representing the sat math score of student
: calculate the margin of error, E, for a 90% confidence interval for the proportion of all adults that watched the World Cup final on television.
|
What are advantages and disadvantages of political influence
: To advance the understanding of public policy, please discuss the following- How do you measure political influence. What are the advantages and disadvantages of political influence
|
What is the social effect of online social networks
: What is the social effect of online social networks
|
What are the pros and cons of sparklines vs charts
: What are the pros and cons of sparklines vs. charts? What needs to be done to a database to ensure that the data is useful and what role can queries play in that
|
Write an essay about child labor
: Write an essay about Child Labor.
|