Level of significance, Applied Statistics

Assignment Help:

Level of Significance: α

The main purpose of hypothesis testing is not to question the computed value of the sample statistic, but to make judgment about the difference between the sample statistic and a hypothesized population parameter. The next step after stating the Null and Alternative Hypotheses, is to decide what criterion to be used for deciding whether to accept or reject the null hypothesis.

When we choose 5% level of significance in a test procedure, there are about 5 cases in 100 that we would reject the hypothesis when it should be accepted, that is, we are about 95% confident that we have made the right decision. Similarly, if we choose 1% level of significance in testing a hypothesis, then there is only 1 case in 100 that we would reject the hypothesis when it should be accepted.

Suppose, that under a given hypothesis the sampling distribution of a statistic θ is approximately a normal distribution with mean

E (θ) and standard deviation (Standard Error) σθ

Figure 

1879_level of significance.png

 

Then z = 2357_level of significance1.png

is called the standardized normal variable or z-score, and its distribution is the standardized normal distribution with mean 0 and standard deviation 1, the graph of which is shown above.

From the above figure, we see that if the test statistic z of a sample statistic  θ lies between -1.96 and 1.96, then we are 95% confident that the hypothesis is true [since the area under the normal curve between z = -1.96 and z  = 1.96 is 0.95 which is 95% of the total area].

But if for a simple random sample we find that the test statistic (or z-score) z lies outside the range -1.96 to 1.96, i.e. if z  > 1.96, we would say that such an event could happen with probability of only 0.05 (total shaded area in the above figure if the given hypothesis were true). In this case, we say that z-score differed significantly from the value expected under the hypothesis and hence, the hypothesis is to be rejected at 5% (or 0.05) level of significance. Here the total shaded area 0.05 in the above figure represents the probability of being wrong in rejecting the hypothesis. Thus if z  > 1.96, we say that the hypothesis is rejected at a 5% level of significance.

The set of z scores outside the range -1.96 and 1.96, constitutes the critical region or region of rejection of the hypothesis or the region of significance. Thus critical region is the area under the sampling distribution in which the test statistic value has to fall for the null hypothesis to be rejected. On the other hand, the set of z scores inside the range -1.96 to 1.96 is called theregion of acceptance of the hypothesis. The values -1.96 and 1.96 are called critical values at 5% level of significance.

From the above discussion we can formulate the following rule of decision:

Decision Rule (Two-Sided Tests)

Significant level

z Value

Decision

5%

5%

1%

1%

| z |  > 1.96

| z |  < 1.96

| z |  > 2.58

| z |  < 2.58

Reject

Accept

Reject

Accept                                              

 


Related Discussions:- Level of significance

Sampling theory, difference between large sample test and small sample test...

difference between large sample test and small sample test

Sampling error , Sampling Error  It is the difference between the value...

Sampling Error  It is the difference between the value of the actual population parameter and the sample statistic. Samples are used to arrive at conclusions regarding the p

Regression analysis, Meaning and Definitions of Regression The dictiona...

Meaning and Definitions of Regression The dictionary meaning of regression is just opposite the meaning of progression. Progression means to move forward while regression means

Express the null hypothesis, Examine the given statement, then express the ...

Examine the given statement, then express the null hypothesis H0 and the alternative hypothesis H1 in symbolic form. The mean weight of women who won a beauty pageant is equal t

Bienayme-chebyshev rule, This probability rule determined by the research o...

This probability rule determined by the research of the two mathematicians Bienayme' and Chebyshev, explains the variability of data about its mean when the distribution of the dat

Lorenz curve , Lorenz Curve   It is a graphic method of measur...

Lorenz Curve   It is a graphic method of measuring dispersion. This curve was devised by Dr. Max o Lorenz a famous statistician.  He used this technique for wealth it i

Postneonatal mortality rate, Mid year population 440000 Late fatal death...

Mid year population 440000 Late fatal death          29 No. of live birth           5200 No. of infant death      423 No. of maternal death 89 No. of infant deaths i

Primary and secondary data, Primary and Secondary Data: Primary Data: ...

Primary and Secondary Data: Primary Data: These data are those are collected for the first time. Thus primary data are original in character and gathered   by actual observat

Mean deviation, First Moment of Dispersion or Mean Deviation Mean devia...

First Moment of Dispersion or Mean Deviation Mean deviation or the average deviation is the measure if dispersion which   is based upon all the items in a variable .It is the a

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd