Level of significance, Applied Statistics

Assignment Help:

Level of Significance: α

The main purpose of hypothesis testing is not to question the computed value of the sample statistic, but to make judgment about the difference between the sample statistic and a hypothesized population parameter. The next step after stating the Null and Alternative Hypotheses, is to decide what criterion to be used for deciding whether to accept or reject the null hypothesis.

When we choose 5% level of significance in a test procedure, there are about 5 cases in 100 that we would reject the hypothesis when it should be accepted, that is, we are about 95% confident that we have made the right decision. Similarly, if we choose 1% level of significance in testing a hypothesis, then there is only 1 case in 100 that we would reject the hypothesis when it should be accepted.

Suppose, that under a given hypothesis the sampling distribution of a statistic θ is approximately a normal distribution with mean

E (θ) and standard deviation (Standard Error) σθ

Figure 

1879_level of significance.png

 

Then z = 2357_level of significance1.png

is called the standardized normal variable or z-score, and its distribution is the standardized normal distribution with mean 0 and standard deviation 1, the graph of which is shown above.

From the above figure, we see that if the test statistic z of a sample statistic  θ lies between -1.96 and 1.96, then we are 95% confident that the hypothesis is true [since the area under the normal curve between z = -1.96 and z  = 1.96 is 0.95 which is 95% of the total area].

But if for a simple random sample we find that the test statistic (or z-score) z lies outside the range -1.96 to 1.96, i.e. if z  > 1.96, we would say that such an event could happen with probability of only 0.05 (total shaded area in the above figure if the given hypothesis were true). In this case, we say that z-score differed significantly from the value expected under the hypothesis and hence, the hypothesis is to be rejected at 5% (or 0.05) level of significance. Here the total shaded area 0.05 in the above figure represents the probability of being wrong in rejecting the hypothesis. Thus if z  > 1.96, we say that the hypothesis is rejected at a 5% level of significance.

The set of z scores outside the range -1.96 and 1.96, constitutes the critical region or region of rejection of the hypothesis or the region of significance. Thus critical region is the area under the sampling distribution in which the test statistic value has to fall for the null hypothesis to be rejected. On the other hand, the set of z scores inside the range -1.96 to 1.96 is called theregion of acceptance of the hypothesis. The values -1.96 and 1.96 are called critical values at 5% level of significance.

From the above discussion we can formulate the following rule of decision:

Decision Rule (Two-Sided Tests)

Significant level

z Value

Decision

5%

5%

1%

1%

| z |  > 1.96

| z |  < 1.96

| z |  > 2.58

| z |  < 2.58

Reject

Accept

Reject

Accept                                              

 


Related Discussions:- Level of significance

Mathematical properties of arithmetic mean, Mathematical Properties ...

Mathematical Properties The sum of deviations of the items from the arithmetic mean (taking signs into account) is always zero, i.e.      = 0. The sum of

Main effects and interactions, what is the independent variable in how ener...

what is the independent variable in how energetic do people feel after drinking different types of soft drints?

Simple linear regression, We are interested in assessing the effects of tem...

We are interested in assessing the effects of temperature (low, medium, and high) and technical configuration on the amount of waste output for a manufacturing plant. Suppose that

Number of principal components, While there are p original variables the n...

While there are p original variables the number of principal components is m such that m

Descriptive statistics, Explanation of descriptive statistics Describe ...

Explanation of descriptive statistics Describe what these descriptive statistics show or what recommendations you would create to AIU.  What information do you now have as a re

Calculate the seasonal indexes , The total number of overtime hours (in 100...

The total number of overtime hours (in 1000s) worked in a large steel mill was recorded for 16 quarters, as shown below. Year Quarter Overtime hour

Estimate a linear probability model, Estimate a linear probability model: ...

Estimate a linear probability model: Consider the multiple regression model: y = β 0 +β 1 x 1 +.....+β k x k +u Suppose that assumptions MLR.1-MLR4 hold, but not assump

Find the optimal adaptive meshes for a skewed beta density, Show that the I...

Show that the ISB in a bin containing the origin of the double exponen-tial density, f(x) = exp(-|x|)/2, is O(h 3 ); hence, the discontinuity in the derivative of f does not have a

Uses of arthematic mean, give me question on mean is the aimplest average t...

give me question on mean is the aimplest average to understand and easy to compute

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd