Level of significance, Applied Statistics

Assignment Help:

Level of Significance: α

The main purpose of hypothesis testing is not to question the computed value of the sample statistic, but to make judgment about the difference between the sample statistic and a hypothesized population parameter. The next step after stating the Null and Alternative Hypotheses, is to decide what criterion to be used for deciding whether to accept or reject the null hypothesis.

When we choose 5% level of significance in a test procedure, there are about 5 cases in 100 that we would reject the hypothesis when it should be accepted, that is, we are about 95% confident that we have made the right decision. Similarly, if we choose 1% level of significance in testing a hypothesis, then there is only 1 case in 100 that we would reject the hypothesis when it should be accepted.

Suppose, that under a given hypothesis the sampling distribution of a statistic θ is approximately a normal distribution with mean

E (θ) and standard deviation (Standard Error) σθ

Figure 

1879_level of significance.png

 

Then z = 2357_level of significance1.png

is called the standardized normal variable or z-score, and its distribution is the standardized normal distribution with mean 0 and standard deviation 1, the graph of which is shown above.

From the above figure, we see that if the test statistic z of a sample statistic  θ lies between -1.96 and 1.96, then we are 95% confident that the hypothesis is true [since the area under the normal curve between z = -1.96 and z  = 1.96 is 0.95 which is 95% of the total area].

But if for a simple random sample we find that the test statistic (or z-score) z lies outside the range -1.96 to 1.96, i.e. if z  > 1.96, we would say that such an event could happen with probability of only 0.05 (total shaded area in the above figure if the given hypothesis were true). In this case, we say that z-score differed significantly from the value expected under the hypothesis and hence, the hypothesis is to be rejected at 5% (or 0.05) level of significance. Here the total shaded area 0.05 in the above figure represents the probability of being wrong in rejecting the hypothesis. Thus if z  > 1.96, we say that the hypothesis is rejected at a 5% level of significance.

The set of z scores outside the range -1.96 and 1.96, constitutes the critical region or region of rejection of the hypothesis or the region of significance. Thus critical region is the area under the sampling distribution in which the test statistic value has to fall for the null hypothesis to be rejected. On the other hand, the set of z scores inside the range -1.96 to 1.96 is called theregion of acceptance of the hypothesis. The values -1.96 and 1.96 are called critical values at 5% level of significance.

From the above discussion we can formulate the following rule of decision:

Decision Rule (Two-Sided Tests)

Significant level

z Value

Decision

5%

5%

1%

1%

| z |  > 1.96

| z |  < 1.96

| z |  > 2.58

| z |  < 2.58

Reject

Accept

Reject

Accept                                              

 


Related Discussions:- Level of significance

Team Collaboration: Business Decision Making Project, Collect data about th...

Collect data about the chosen business problem or opportunity at the company. Explain how you obtained a suitable sample of either qualitative or quantitative data. Review data f

Modified distribution mathod, a b c d e supply p 3 4 6 8 8 20 q 2 6 0 5 8...

a b c d e supply p 3 4 6 8 8 20 q 2 6 0 5 8 30 r 7 11 20 40 3 15 s 1 0 9 14 6 13 d 15 3 12 10 20

Write down the payoff matrix, Two individuals, player 1 and player 2, are  ...

Two individuals, player 1 and player 2, are  competing in an auction to obtain a valuable object. Each player bids in a sealed envelope, without knowing the bid of the other player

Frequency distribution, mark number of student 0-10 4 10-20 8 ...

mark number of student 0-10 4 10-20 8 20-30 11 30-40 15 40-50 12 50-60 6 calculate frequency distribution

Cluster analysis, Cluster Analysis could be also represented more formally ...

Cluster Analysis could be also represented more formally as optimization procedure, which tries to minimize the Residual Sum of Squares objective function: where μ(ωk) - is a centr

Disadvantages of mode, Disadvantages The value of mode cannot always...

Disadvantages The value of mode cannot always be determined. In some cases we may have a bimodal series. It is not capable of algebraic manipulations. For example, from t

Find the minimum constant workforce, Find the minimum constant workforce: ...

Find the minimum constant workforce: ABC Company, a manufacturer of roofing supplies, has developed monthly forecasts for roofing tiles. The forecasted demand and the expected

Large sample test for mean, Large Sample Test for Mean A random sample ...

Large Sample Test for Mean A random sample of size n (n > 30) has a sample mean    . To test the hypothesis that the population mean μ has a specified value  μ 0  let us formu

Applications of standard error, Applications of Standard Error   ...

Applications of Standard Error   Standard Error is used to test whether the difference between the sample statistic and the population parameter is significant or is d

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd