Level of significance, Applied Statistics

Assignment Help:

Level of Significance: α

The main purpose of hypothesis testing is not to question the computed value of the sample statistic, but to make judgment about the difference between the sample statistic and a hypothesized population parameter. The next step after stating the Null and Alternative Hypotheses, is to decide what criterion to be used for deciding whether to accept or reject the null hypothesis.

When we choose 5% level of significance in a test procedure, there are about 5 cases in 100 that we would reject the hypothesis when it should be accepted, that is, we are about 95% confident that we have made the right decision. Similarly, if we choose 1% level of significance in testing a hypothesis, then there is only 1 case in 100 that we would reject the hypothesis when it should be accepted.

Suppose, that under a given hypothesis the sampling distribution of a statistic θ is approximately a normal distribution with mean

E (θ) and standard deviation (Standard Error) σθ

Figure 

1879_level of significance.png

 

Then z = 2357_level of significance1.png

is called the standardized normal variable or z-score, and its distribution is the standardized normal distribution with mean 0 and standard deviation 1, the graph of which is shown above.

From the above figure, we see that if the test statistic z of a sample statistic  θ lies between -1.96 and 1.96, then we are 95% confident that the hypothesis is true [since the area under the normal curve between z = -1.96 and z  = 1.96 is 0.95 which is 95% of the total area].

But if for a simple random sample we find that the test statistic (or z-score) z lies outside the range -1.96 to 1.96, i.e. if z  > 1.96, we would say that such an event could happen with probability of only 0.05 (total shaded area in the above figure if the given hypothesis were true). In this case, we say that z-score differed significantly from the value expected under the hypothesis and hence, the hypothesis is to be rejected at 5% (or 0.05) level of significance. Here the total shaded area 0.05 in the above figure represents the probability of being wrong in rejecting the hypothesis. Thus if z  > 1.96, we say that the hypothesis is rejected at a 5% level of significance.

The set of z scores outside the range -1.96 and 1.96, constitutes the critical region or region of rejection of the hypothesis or the region of significance. Thus critical region is the area under the sampling distribution in which the test statistic value has to fall for the null hypothesis to be rejected. On the other hand, the set of z scores inside the range -1.96 to 1.96 is called theregion of acceptance of the hypothesis. The values -1.96 and 1.96 are called critical values at 5% level of significance.

From the above discussion we can formulate the following rule of decision:

Decision Rule (Two-Sided Tests)

Significant level

z Value

Decision

5%

5%

1%

1%

| z |  > 1.96

| z |  < 1.96

| z |  > 2.58

| z |  < 2.58

Reject

Accept

Reject

Accept                                              

 


Related Discussions:- Level of significance

Carpal tunnel statistics, Cindy, the Assistant Vice President of Engineerin...

Cindy, the Assistant Vice President of Engineering/Administrative Services at Blue Cross Blue Shield Rhode Island (BCBSRI), has seen all of the OSHA statistics: In 2000, 1

Simple linear regression, Simple Linear Regression   While correlati...

Simple Linear Regression   While correlation analysis determines the degree to which the variables are related, regression analysis develops the relationship between the var

Calculate unbiased estimate of the variance, This question has two parts wi...

This question has two parts with multiple items to answer. You are a psychologist who has collected the subjective well-being scores of a number of elderly people aged 90 or abo

Conduct a hypothesis testing, Celia is a nurse in a geriatric ward.  She no...

Celia is a nurse in a geriatric ward.  She noticed that older persons in her care are having problems sleeping at night.  She decided to introduce non-pharmocologic ways of relaxat

Rank correlation, Rank Correlation Sometimes the characteristics whose ...

Rank Correlation Sometimes the characteristics whose possible correlation is being investigated, cannot be measured but individuals can only be ranked on the basis of the chara

Determine the optimal order size, The Truly Canadian Restaurant stocks a pr...

The Truly Canadian Restaurant stocks a private red table wine that it purchases from a local winery in the Niagara Falls region. The daily demand for the wine at the restaurant is

Simple random sampling, Simple Random Sampling In Simple Random Sampli...

Simple Random Sampling In Simple Random Sampling each possible sample has an equal chance of being selected. Further, each item in the entire population also has an equal chan

The sum of mean and variance, the sum of mean and variance ofabinomia distr...

the sum of mean and variance ofabinomia distribution of 5 trials is 9/5, find the binomial distribution.

Modified distribution mathod, a b c d e supply p 3 4 6 8 8 20 q 2 6 0 5 8...

a b c d e supply p 3 4 6 8 8 20 q 2 6 0 5 8 30 r 7 11 20 40 3 15 s 1 0 9 14 6 13 d 15 3 12 10 20

Make a decision about the claim, Make a decision about the given claim. Do...

Make a decision about the given claim. Do not use any formal procedures and exact calculation. Use only the rare event rule. Claim: A coin favors head when tossed, and there

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd