Already have an account? Get multiple benefits of using own account!
Login in your account..!
Remember me
Don't have an account? Create your account in less than a minutes,
Forgot password? how can I recover my password now!
Enter right registered email to receive password!
Q. Draw the expression tree of the infix expression written below and then convert it intoPrefix and Postfix expressions.
((a + b) + c * (d + e) + f )* (g + h )
Ans:
The expression given is:
The postfix expression obtained is: ((a+b)+c*(d+e)+f)*(g+h) = ((ab+)+c*(de+)+f)*(gh+) = ((ab+)+(cde+*)+f)*(gh+) = ((ab+cde+*+)+f)*(gh+) = (ab+cde+*+f+)*(gh+) =(ab+cde+*+f+gh+*) The prefix expression obtained is: ((a+b)+c*(d+e)+f)*(g+h) = ((+ab)+c*(+de)+f)*(+gh) = ((+ab)+(*c+de)+f)*(+gh) = ((++ab*c+de)+f)*(+gh) = (+++ab*c+def)*(+gh) = (*+++ab*c+def+gh)
The postfix expression obtained is:
((a+b)+c*(d+e)+f)*(g+h)
= ((ab+)+c*(de+)+f)*(gh+)
= ((ab+)+(cde+*)+f)*(gh+)
= ((ab+cde+*+)+f)*(gh+)
= (ab+cde+*+f+)*(gh+)
=(ab+cde+*+f+gh+*)
The prefix expression obtained is:
= ((+ab)+c*(+de)+f)*(+gh)
= ((+ab)+(*c+de)+f)*(+gh)
= ((++ab*c+de)+f)*(+gh)
= (+++ab*c+def)*(+gh)
= (*+++ab*c+def+gh)
Q . Write down the non-recursive algorithm to traverse a tree in preorder. Ans: T he Non- Recursive algorithm for preorder traversal is written below: Initially i
The worst case of quick sort has order O(n 2 )
What are stacks? A stack is a data structure that organizes data similar to how one organizes a pile of coins. The new coin is always placed on the top and the oldest is on the
The process of accessing data stored in a serial access memory is same to manipulating data on a By using stack method.
Acyclic Graphs In a directed graph a path is said to form a cycle is there exists a path (A,B,C,.....P) such that A = P. A graph is called acyclic graph if there is no cycle in
Merging 4 sorted files having 50, 10, 25 and 15 records will take time O (100)
A linear collection of data elements where the linear node is given by means of pointer is known as Linked list
Stacks are often used in evaluation of arithmetic expressions. An arithmetic expression contains operands & operators. Polish notations are evaluated through stacks. Conversions of
So far, we now have been concerned only with the representation of single stack. What happens while a data representation is required for several stacks? Let us consider an array X
#2 example of recursion
Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!
whatsapp: +91-977-207-8620
Phone: +91-977-207-8620
Email: [email protected]
All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd